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Abstract. Given two strings X and Y of N and M characters respectively, the Longest Common Sub-
sequence (LCS) Problem asks for the longest sequence of (non-contiguous) matches between X and Y .
Using extensive Monte-Carlo simulations for this problem, we find a finite size scaling law of the form
E(LN )/N = γS + AS/(lnN

√
N) + ... for the average LCS length of two random strings of size N over S

letters. We provide precise estimates of γS for 2 ≤ S ≤ 15. We consider also a related Bernoulli Matching
model where the different entries of an N ×M array are occupied with a match independently with proba-
bility 1/S. On the basis of a cavity-like analysis we find that the length of a longest sequence of matches in
that case behaves as LBNM ∼ γ

B
S (r)N where r = M/N and γBS (r) = (2

√
rS − r − 1)/(S − 1). This formula

agrees very well with our numerical computations. It provides a very good approximation for the Random
String model, the approximation getting more accurate as S increases. The question of the “universality
class” of the LCS problem is also considered. Our results for the Bernoulli Matching model show very
good agreement with the scaling predictions of [15] for Needleman-Wunsch sequence alignment. We find
however that the variance of the LCS length has a scaling different from Var(LN) ≈ N2/3 in the Random
String model, suggesting that long-ranged correlations among the matches are relevant in this model. We
finally study the “ground state” properties of this problem. We find that the number NLCS of solutions
typically grows exponentially with N . In other words, this system does not satisfy “Nernst’s principle”.
This is also reflected at the level of the overlap between two LCSs chosen at random, which is found to be
self averaging and to approach a definite value qS < 1 as N →∞.

PACS. 75.10.Nr Spin-glass and other random models – 02.60.Pn Numerical optimization

1 Introduction

Let X = (X1, ...,XN ) and Y = (Y1, ..., YM ) be two strings
of characters. Here the Xi’s and Yj ’s are letters of a given
alphabet, which will be assumed throughout this paper to
be finite and of fixed size S ≥ 2. The Longest Common
Subsequence problem, which we shall refer to as the LCS
problem, consists of finding a sequence of letters which
appears as a subsequence of both X and Y , and which is of
maximal size. Equivalently one can ask for two sequences
1 ≤ i1 < ... < iL ≤ N and 1 ≤ j1 < ... < jL ≤ M such
that Xik = Yjk , 1 ≤ k ≤ L and L is maximal.

The length of a LCS can be viewed as a natural mea-
sure of the “proximity” of different strings of letters. It is
an example of the “best sequence alignments” which are
of use in biology, in tests for comparing long molecules
such as proteins and nucleic acids [1–3].

It is also an important problem in computer science,
as the length of a LCS of two strings is closely related
to the number of editing operations (insertions/deletions)
which are necessary to transform one string into the other
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(the so-called “string-edit” distance) [4]. A large number
of variants and applications of the LCS problem are also
described in [5].

Another, less obvious motivation for the study of this
problem comes from the fact that it can be formulated
as a model of directed passage time percolation on a two
dimensional (triangular) lattice [6,7]. To see this, consider
the directed lattice whose vertices are the integer points
(ij), 0 ≤ i ≤ N, 0 ≤ j ≤M and whose edges are the bonds
formed by nearest neighbors together with the bonds of
the form {(i−1, j−1), (ij)}, 1 ≤ i ≤ N, 1 ≤ j ≤M , all of
these bonds being oriented according to the positive direc-
tion of the axes. To each bond between nearest neighbors
attach the weight 0, and to each bond {(i− 1, j− 1), (ij)}
attach the weight δXi,Yj , that is 1 if Xi = Yj , and to 0
otherwise. Define the weight of any path on this lattice to
be the sum of the bonds’ weights along the path. Then
clearly a LCS between X and Y may be constructed from
any directed path of maximum weight joining the point
(0, 0) to the point (N,M). If we interpret the weight of
a bond as a time required for the passage of that bond,
we seek the maximum rather than the minimum passage
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time from (0, 0) to (N,M), but this is of no significance
here.

This paper is concerned with the stochastic version of
the LCS problem, where one is given very long strings the
letters of which are chosen at random, independently and
uniformly in a given alphabet of size S. This problem has
retained much attention [8,9,11] (see also [12] for a re-
cent review). The main issue is to understand the large
N behaviour of the LCS length of the N first letters of
X and Y . Let LN be this number. Observing that the
sequence (LN ) is superadditive (LN1+N2 ≥ LN1 + LN2),
and using the martingale difference method, one can prove
in an elegant way [13] that with probability one (for infi-
nite strings), LN is asymptotic from below to γSN , where
0 < γS ≤ 1 is a constant whose exact value is unknown.
It has also been proved [7,14] that the rate of convergence
of the expected ratio E(LN )/N to γS is at least as fast as

O(
√

lnN/N).

In the passage time percolation picture the weights at-
tached to the bonds are correlated random variables (for
example the occupation numbers of the matches on the
corners of any rectangle of the lattice are obviously cor-
related). We consider also a related model where each
bond {(i − 1, j − 1), (ij)} is given a weight 1 (resp. 0)
independently of the others with probability 1/S (resp.
1 − 1/S). We shall refer to this model as the Bernoulli
Matching model, and denote by LBN the maximum weight
of a directed lattice path joining (0, 0) to (N,N) (equiva-
lently LBN is the maximum L for which there are sequences
1 ≤ i1 < ... < iL ≤ N and 1 ≤ j1 < ... < jL ≤ N such
that (ik, jk) is a match, 1 ≤ k ≤ L). We let γBS be the limit
limN→∞ L

B
N/N , which is shown to exist a.e. in exactly the

same way as for γS . Also we note that Alexander’s rate
result [7] applies to E(LBN ) as well.

Much effort have been made to get bounds on γS
[9,10], but there are still non negligible gaps between the
known upper and lower bounds [12]. Estimations of γS
based on numerical simulation are also available [3,7,12]
but apparently no attempt has been made to determine
numerically the finite size corrections to the linear scaling
law E(LN ) ∼ γSN .

This paper presents the results of extensive Monte-
Carlo simulations for the LCS problem, showing that the
difference γSN−E(LN ) has a well-defined asymptotic be-
haviour, allowing one to get precise estimates of γS by
extrapolation. The same finite size scaling law appears to
hold for the Bernoulli Matching model, and we have ob-
tained corresponding estimates for γBS .

We further considered the case where the strings X
and Y are of different sizes, N 6= M . The relevant
case occurs when N and M are large but comparable,
namely N,M → ∞, the ratio r = M/N being fixed
(r > 0). Let LN(r) = LN,[rN ] be the length of a LCS
of X1, ...,XN and Y1, ..., Y[rN ]. Then with probability 1,
one has limN→∞ LN(r)/N = γS(r) where 0 < γS(r) ≤ 1.
Of course γS(1) = γS , and the function γS(r) has the
obvious symmetry property γS(1/r) = 1/rγS(r). In the
picture of directed percolation r is given by tan(π/4 + φ)
where φ ∈ [−π/4, π/4] is the angle between the direction

of interest and the first bisector, and the object of interest
is the set of points which are “wet” at time t, defined here
to be the set Ct = {(ij): Li,j ≤ t}. As t→∞ (for N and
M infinite) the set Ct/t is asymptotically delimited by

the curve of polar equation ρ(φ) =
√

1 + r(φ)2/γS(r(φ)).
The above symmetry property reflects the fact that Ct is
asymptotically symmetric with respect to the first bisec-
tor. A percolation transition occurs in this problem when
r = rc = S, namely γS(r) = 1 for r ≥ S while γS(r) < 1
for r < S. By symmetry we have another transition at
r = 1/rc = 1/S, such that γS(r) = r for r ≤ 1/S and
γS(r) < r for r > 1/S. Analogous comments apply to
the Bernoulli Matching model. In that case we provide
a simple analytic expression for the corresponding func-
tion γBS (r), which is derived (see Sect. 3 below) on the
basis of a cavity-like analysis of the LCS problem. The
cavity method is an approximation scheme generally con-
sidered to be appropriate for describing the mean field
theory of disordered systems (such as spin glasses) [28].
The Bernoulli Matching model is not a mean field model
however, but really a two dimensional percolation model,
and by “cavity” we mean the following: first, the proper-
ties of the system can be computed by use of a recursion
formula. This is equation (1) given below, which is valid
for the Random String model as well as for the Bernoulli
Matching model. Second, a decorrelation, or “clustering”
property [28] happens to hold in the Bernoulli Matching
model, allowing the recursion formula to be solved at large
N,M by use of a self-consistent approximation. This leads
to an expression of γBS (r) in very good agreement with our
numerical results.

We finally investigated the “configuration space” prop-
erties of this problem, which are most easily accessible by
constructing what we call the LCS graph of given strings
X and Y . This structure is defined in Section 4. It can be
computed in a very efficient way, and it gives a direct ac-
cess to properties of the set of LCSs of X and Y , enabling
one to compute such quantities as:

(i) the total number NLCS of LCSs of X and Y ;
(ii) the average overlap between two LCSs chosen at ran-

dom among the set of LCSs of X and Y ;
(iii) the distribution of the distance between two succes-

sive matches in a LCS. By distance we mean here the
Manhattan distance |i1− i2|+ |j1− j2| for given points
(i1j1), (i2j2);

(iv) the mean square “displacement” with respect to the
first bisector, of the matches along a LCS, where (fol-
lowing [15]) the displacement coordinate of a point (ij)
is defined to be i− j.

These type of computations are of interest because
they provide informations on the structure of the set of
solutions which in other systems may be very difficult to
obtain. For example our computations show that typical
random strings have many common subsequences of max-
imum length. Their number typically grows exponentially
with N , i.e. the ground state entropy of this system is not
zero. We provide estimates of this entropy and of the typi-
cal overlap between two randomly chosen LCSs for several
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values of S. Properties such as (iv) are of physical inter-
est as they depend on long-ranged correlations among the
matches in a LCS, and they characterize the “universality
class” of the LCS problem. This question has been re-
cently analyzed by Hwa and Lässig [15] who showed that
the percolation formulation of the LCS problem (and more
generally of Needleman-Wunsch sequence alignment de-
scribed below) can be treated in the continuum limit as a
model of directed polymer in a quenched random medium.
In this analogy each directed path on the above defined
lattice is assigned an energy −W , where W is the weight
of the path. The statistics of these paths is taken to be the
Boltzmann-Gibbs distribution [16]. The LCS length then
corresponds to the ground state energy of the “bridge”
from (0, 0) to (N,M). In the case of the Bernoulli Match-
ing model, this leads to a complete characterization of
the universality class of the model: the continuum limit is
described by the well-studied 2D-directed path (or equiv-
alently the 1D-random walk) in a Gaussian random po-
tential. The fluctuations of LBN and of the “displacement”
i − j along the optimal paths are governed by exactly
known universal exponents ω = 1/3 and ζ = 2/3 respec-
tively. Hence Var(LBN) should grow asymptotically asN2/3

and the mean square displacement as N4/3. Our numer-
ical results agree very well with these predictions. The
question of the universality class of the Random String
model is more subtle, as this model involves long ranged
correlations in the disorder. Hwa and Lässig provide evi-
dence that these correlations are not relevant in the con-
tinuum limit for a range of the defining parameters of
Needleman-Wunsch alignment. In the regime correspond-
ing to the LCS problem (which was not considered in [15]),
our results only partly supports the above predictions:
the measured mean square displacement for the Random
String model show no deviation from the superdiffusive
N4/3 scaling. The behaviour of Var(LN) is close to, but
significantly different from N2/3, suggesting that correla-
tions among the matches in the Random String model are
relevant to the universality class of the LCS problem. It
should not be considered a surprise that the scaling rela-
tion ω = 2ζ − 1 appears invalidated by our results. This
scaling relation is known to be intimately connected with
Galilean invariance [17]. In the formulation of the Ran-
dom String LCS problem as a 1D-random walk, long-range
temporal correlations are present in the random potential,
and Galilean invariance is broken. What is surprising is
that only the fluctuations of the ground state energy show
a scaling affected by these correlations. This is left to the
reader as an interesting open question.

We close this introduction by explaining the position
of the LCS problem with respect to sequence alignment
methods in molecular biology. The purpose of these meth-
ods is to provide efficient tools for the detection of relevant
similarities among DNA molecules or among proteins. Rel-
evance refers here to finding the functional and evolution-
ary relationships between these molecules, and is a main
biological issue. This problem is the source of a rich inter-
play between biology and computational sciences (see [18]
for reviews). Even if determining what is the “best align-

ment” of two sequences for biological purposes remains
in part a matter of art, standard comparison algorithms
are widely used by biologists. These algorithms are very
useful to confront a newly discovered DNA molecule or
protein to the huge existing databases of known molecules
(and then to infer the possible functional properties of the
new molecule). The LCS problem corresponds to a class of
alignment algorithms discovered by Needleman and Wun-
sch [1], which provided the first systematic tool for taking
into account the insertions and deletions which naturally
occurs in the evolution of biological sequences. To describe
this approach consider again the percolation formulation
of the LCS problem. An alignment of the strings X and
Y is viewed as a directed path on the the lattice defined
above, tracing a possible “evolution” from X to Y : each
diagonal bond (ending at (ij)) on the path represents a
substitution of the letter Yj to the letter Xi (if (ij) is
a match Xi is left unchanged). Horizontal and vertical
bonds represent respectively deletions and insertions, also
termed as indel operations, or “gaps”. In this way each
directed path from (0, 0) to (N,M) corresponds to a well-
defined sequence of edit operations transformingX into Y
(or equivalently Y into X), which is the usual definition of
an “alignment”. A given path γ is assigned a score W (γ),
which is defined (in the simplest version of the model) by
weighting each substitution along γ with a matching func-
tion s(Xi, Yj), and each gap with a penalty −δ(δ > 0).
A common choice for s(Xi, Yj) is to assign a score 1 to
a match Xi = Yj and a penalty −µ (µ > 0) to a mis-
match Xi 6= Yj . The optimal alignments are determined
by maximization of the score W (γ). We are then facing a
longest path problem very similar to the LCS problem. In
particular the optimal score WNM from (0, 0) to (N,M)
can be computed in an efficient way using a straightfor-
ward adaptation of the dynamic programming algorithm
of Section 2. Needleman-Wunsch sequence alignment is a
global alignment method, since the whole strings X and
Y are aligned together. The optimal alignments are in-
variant by multiplying the matching function and the gap
penalty by any positive constant. Moreover the numbers
N+, N−, and Ng of matches, mismatches, and gaps re-
spectively along any directed path from (0, 0) to (N,M)
are related by 2N+ + 2N− + Ng = N + M . Hence with
the above choices the number of independent parameters
is reduced to one: it is equivalent to maximize W (γ) =

N+ − µN− − δNg or to maximize W̃ (γ) = N+ − εNg,
where ε = (δ − µ/2)/(1 + µ). As N,M →∞ the modified

optimal score behaves as W̃NM ∼ a(ε, r)N (r = M/N),
where a(ε, r) is a monotonous decreasing (demonstrably
continuous) function of ε. For ε ≤ −1/2 the problem is

trivial and W̃NM = −(N + M)ε. When −1/2 < ε < 0,
it is always advantageous to change a mismatch for two
gaps (an insertion followed by a deletion). We may then
assume 2N+ +Ngaps = N +M and the problem reduces
to maximizing N+, i.e. to the LCS problem. In this region
a(ε, r) interpolates linearly from its value at ε = −1/2 to
its value at ε = 0. The case ε = 0 corresponds exactly to
the LCS problem: mismatches and gaps are then equiva-
lent as regards to the score. Since gaps and mismatches are
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known both to occur during evolution, and are not equiv-
alent energetically, the biologically relevant region clearly
lies within ε > 0. Hence the LCS problem represents a nat-
ural (even if unrealistic) limit case of Needleman-Wunsch
sequence alignment. It must be pointed out that for bi-
ological purposes (in particular for detecting weak sim-
ilarities between rather remote sequences), local rather
than global alignment is often required. A powerful ap-
proach to local alignment is Smith-Waterman algorithm
[19], which maximizes the score W (γ) over all pairs of
substrings (i.e. contiguous segments) of X and Y . In the
percolation picture, the end points of the paths associ-
ated with local alignments are no longer fixed. The gap
and mismatch penalties are then really different param-
eters and strongly influence the optimal alignments. In
fact for random sequences Smith-Waterman alignment un-
dergoes a phase transition from global to local alignment
[3,20]: for small δ and µ, more precisely as long as δ and µ
are such that the optimal score WNM obtained by global
alignment is positive, we recover essentially Needleman-
Wunsch alignment: for large N,M , the optimal Smith-
Waterman score HNM satisfies HNM ≈ WNM with high
probability. Note that the case δ = 0 reduces as before to
the LCS problem. For sufficiently high gap and mismatch
penalties, global alignment leads to a negative score WNM

growing linearly with N,M in absolute value. A positive
score can be achieved only by small paths taking advan-
tage of the local fluctuations in the density of matches.
This is the genuinely local phase, where HNM grows only
logarithmically with N,M . Clearly the LCS problem is
no more relevant to this phase. For example the exponen-
tial proliferation of solutions occurring in the LCS prob-
lem, relevant to the global phase, is replaced in the local
phase by a small number of well-characterized optimal and
suboptimal alignments [21]. The transition line between
the global and the local phases, which separates the re-
gions of positive and negative linear growth of the global
score WNM , is easily determined from the knowledge of
a(ε, r) defined above. Interestingly, the neighborhood of
this transition line is found empirically to be a most rel-
evant (δ, µ)-region for biological purposes [21]. Hence the
value a(0, r) = γS(r) provides some valuable information
thanks to the monotonicity of a(ε, r). More importantly,
even if the biological relevance of purely global alignments
is for the present difficult to address, clearly it is of inter-
est to understand their statistical properties [22]. As the
LCS problem corresponds in some sense to the “most”
global case of sequence alignment, it deserves particular
attention.

2 The average length of a longest common
subsequence

There are several algorithms for computing the LCS
length of two strings X = (X1, ...,XN) and Y =
(Y1, ..., YM ). The best known is based on a dynamic pro-
gramming approach as follows. For i, j ≥ 1, let Lij be the
length of a LCS of (X1, ...,Xi) and (Y1, ..., Yj). We call the

matrix (Lij) the LCS matrix of the given instance. The
strategy consists of using the fact that Lij can be readily
computed if Li−1,j−1, Li−1,j and Li,j−1 are known. In-
deed one has Lij = Li−1,j−1 + 1 when Xi = Yj , and
Lij = max(Li−1,j , Li,j−1) when Xi 6= Yj . In short

Lij = max(Li−1,j , Li,j−1, Li−1,j−1 + δXi,Yj ). (1)

This recurrence relation, with the obvious initial condi-
tions Li,0 = L0,j = 0, provide a very simple and efficient
way to compute the LCS matrix of X and Y . This algo-
rithm arises also naturally in the passage time percolation
picture. Indeed the LCS problem, viewed as a longest di-
rected path problem as described above, has a natural for-
mulation as a linear programming problem. Relation (1)
is nothing but the solution to the dual program, which is

min(LNN − L00) (2)

for given numbers Lij , 0 ≤ i, j ≤ N subject to the con-
straints

Lij ≥ Li−1,j−1 + δXi,Yj , Lij ≥ Li−1,j , Lij ≥ Li,j−1,

1 ≤ i, j ≤ N, (3)

and Li,0 = L0,j = 0.
The time required to compute the LCS matrix of X

and Y using (1) is given essentially by the product NM .
Of course the whole LCS matrix contains more informa-
tion than needed to construct a LCS of X and Y or to
compute their LCS length. More involved algorithms fo-
cus attention on subsets of the set of matches of X and
Y , i.e. the set of points (ij) such that Xi = Yj . These
algorithms may achieve much better time bounds in some
special cases. However no algorithm is known for the LCS
problem which achieve a significantly better time bound
than O(NM) in the general case, or even in average when
X and Y are two random strings over an alphabet of size
S ≥ 2. The fastest known algorithm is described in [23].

Moreover relation (1) is highly suited for a finite size
scaling analysis of the LCS length, as it may be easily
implemented in order to compute in timeO(N2) and space
O(N) the whole profile of values Li = Li,i, 1 ≤ i ≤ N
for any given instance. Indeed, to compute the ith line of
the LCS matrix it is not necessary to have stored all the
previous lines, since only the (i− 1)th line is needed. This
property also makes the computation of the LCS matrix
parallelisable to some extent, and a significant speed up is
obtained in the case of very long strings by implementing
(1) on a parallel machine.

2.1 Finite size behaviour of E(LN)

In order to measure the finite size behaviour of the average
LCS length, we made a direct Monte-Carlo evaluation of
E(LN) for all N up to a certain number and over large
samples of random strings. Namely we computed averages
of LN over 105 instances for N ≤ 1500, and over 104

instances for 1500 ≤ N ≤ 104. We then extrapolated these
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estimates to the large N limit by using a χ2 analysis. In
order to check the extrapolation procedure we performed
a second series of experiments on a parallel computer, over
smaller samples of 30 to 50 instances, but for problem sizes
up to N = 105.

We found that a very reliable extrapolation to the large
N limit is obtained if one assumes a finite size behaviour
of the form

E(LN )

N
= γS +

AS

lnN
√
N

+ εN . (4)

Here AN is a negative constant and εN represents fur-
ther corrections which we expect to be at most O(1/N).
To extract the precise asymptotic behaviour (if any) of
εN would certainly require improvement on the precision
of our finite size estimates. The statistical precision we
had on E(LN ), up to N ≤ 104, was better than 0.002%,
and further improvement would have been very time con-
suming.

By using a best fit of our N ≤ 1500 estimates based
on (4) with εN of the form εN = K/(N lnαN) (K and α
being constants) we get a surprisingly good extrapolation
up to values of N of order 105, which one would not be
able to obtain by using another form than (4).

However the form chosen for εN remains somewhat
arbitrary. Since the estimation of γS and AS should be
more precise when extrapolating from larger values of N ,
we performed a second series of extrapolations, using the
finite size estimates obtained for 1500 ≤ N ≤ 104. For
these values of N , the term εN is much less significant,
and a linear extrapolation of E(LN ) as a function of x =

1/(lnN
√
N) is already very precise. Figure 1 reproduces

our results in the cases S = 2, S = 3 and S = 15. The solid
curves in these figures are best fits of our 1500 ≤ N ≤ 104

estimates to a linear function of 1/(
√
N lnN). In this way

we obtained the estimates of γS and AS which are given
in Table 1a for 2 ≤ S ≤ 15.

To obtain error bars on these estimates one should use
a χ2 analysis [24]. However this method underestimates
the true error here. Indeed, χ2 analysis leads to errors for
the fitting parameters which decrease as 1/

√
n for n� 1,

n being the number of degrees of freedom, that is the num-
ber of independent datas in the fit. Since we computed
for each instance a whole profile, the averaged points in
Figure 1 are not independent: there are correlations in the
sequence (Li), 1 ≤ i ≤ N , which results in a smoothing of
the averaged profile, or equivalently in a reduction of the
“effective” number of independent datas in the fit. More-
over these correlations are long-ranged, which makes it
uneasy to measure an effective number of degrees of free-
dom. We thus relied on a semi-empirical method, by mea-
suring the range over which the fitting parameters varied
for different choices of εN . Typically we obtained in this
way an “error” less than 0.01% on γS and 5% on AS . In
fact εN happens to be only slightly larger than the pre-
cision of our finite size estimates for 1500 ≤ N ≤ 104.
We thus expect the above procedure to provide a faith-
ful (slightly overestimated) measure of the true error on
our estimates. Rather than quoting semi-empirical error
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Fig. 1. Extrapolation of the N ≤ 104 estimates for E(LN)/N
to the large N limit for S = 2, 3 and 15. The solid curves
represent best fits to a linear function of x = 1/(lnN

√
N).

Estimates of E(LN )/N for 2.104 ≤ N ≤ 105, not taken into
account in the extrapolation, are also included.

bars, Table 1 gives the results obtained by making re-
spectively the choices (a) εN = 0, (b) εN ∼ BS/N and
(c) εN ∼ BS/(N lnN). Note that the cases (b) and (c)
agree to a better accuracy together than with case (a). To
determine the precise form of the “second order” correc-
tions however clearly more precise computations would be
needed.
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Table 1. Results of an extrapolation of our finite size estimates (1500 ≤ N ≤ 104) based on (4) with different choices of εN .
(a) εN = 0; (b) εN ∼ BS/N ; (c) εN ∼ CS/(N lnN). The numbers in parentheses represent statistical errors obtained by χ2

analysis, in units of the last written digit.

(a)

S γS AS − S γS AS −

2 0.812282(2) − 1.6276(5) − 9 0.493582(3) − 1.734(2) −

3 0.717634(3) − 1.665(2) − 10 0.474702(2) − 1.742(1) −

4 0.654304(11) − 1.677(7) − 11 0.458028(2) − 1.724(1) −

5 0.607452(4) − 1.710(3) − 12 0.443168(3) − 1.721(2) −

6 0.570625(3) − 1.729(2) − 13 0.429784(3) − 1.694(2) −

7 0.540509(2) − 1.729(1) − 14 0.417665(3) − 1.728(2) −

8 0.515228(3) − 1.730(2) − 15 0.406609(4) − 1.745(3) −

(b)

S γS AS BS S γS AS BS

2 0.812386(4) − 1.765(5) 0.59(2) 9 0.493595(13) − 1.75(2) 0.10(9)

3 0.717637(11) − 1.67(2) 0.03(8) 10 0.474696(9) − 1.73(2) − 0.05(7)

4 0.654487(7) − 1.892(8) 0.77(3) 11 0.458017(9) − 1.71(2) − 0.09(7)

5 0.607495(20) − 1.78(3) 0.33(12) 12 0.443176(12) − 1.73(2) 0.06(9)

6 0.570658(12) − 1.78(2) 0.25(8) 13 0.429718(10) − 1.59(2) − 0.51(7)

7 0.540500(9) − 1.72(2) − 0.06(7) 14 0.417627(13) − 1.67(2) − 0.3(1)

8 0.515173(10) − 1.64(2) − 0.42(8) 15 0.406654(16) − 1.82(2) 0.34(12)

(c)

S γS AS CS S γS AS CS

2 0.812370(3) − 1.726(3) − 2.95(10) 9 0.493595(11) − 1.75(2) − 0.6(5)

3 0.717637(10) − 1.67(2) − 0.1(4) 10 0.474697(8) − 1.74(1) 0.3(4)

4 0.654442(4) − 1.812(4) − 3.00(7) 11 0.458019(8) − 1.71(1) 0.4(4)

5 0.607490(14) − 1.76(2) − 1.8(7) 12 0.443175(10) − 1.73(2) − 0.3(5)

6 0.570653(10) − 1.77(2) − 1.3(5) 13 0.429728(8) − 1.62(1) 2.7(4)

7 0.540502(8) − 1.72(1) 0.4(4) 14 0.417635(11) − 1.69(2) 1.5(5)

8 0.515182(9) − 1.67(1) 2.2(4) 15 0.406649(14) − 1.80(2) − 1.9(7)

2.2 The variance of LN and the universality class
of the LCS problem

It has been observed long ago by Chvatal and Sankoff
[8] that the variance of the LCS length is numerically
very small. These authors even conjectured that Var(LN)
might be O(N2/3). It has been suggested by Talagrand
(in the context of longest increasing subsequences [25]),
that the smallness of Var(LN ) may be related to the
fact that the number of LCSs of two random sequences
is very large. The only known general bound is however
Var(LN) = O(N), an immediate consequence of the con-
centration inequality (7). Anyway the work of Hwa and
Lässig [15] provides a theoretical answer to the conjecture
of Chvatal and Sankoff: the LCS problem falls into the
universality class of a model of directed polymer in a 2D
random potential. The variance of LBN in the Bernoulli

Matching model should grow as N2/3. For the Random
String model we must be cautious with this prediction, but

it should provide at least a first approximation. The scal-
ing behaviour of the variance of the LCS length is shown
in Figure 2, both for the Random String model and for the
Bernoulli Matching model, and for different values of S.
We see as expected a very good agreement with the scaling
law Var(LBN ) ≈ N2/3 for the Bernoulli Matching model.
the results for the Random String model are more interest-
ing: the scaling of Var(LN) is slightly, but clearly different
from N2/3. The correlations among the matches should
be expected to be more and more relevant as N grows,
since 2N independent variables are involved in LN against
N2 in LBN . In fact our results suggest that something like
a crossover occurs from a small N scaling regime where
Var(LN) ≈ N2/3 to an asymptotic scaling regime where

Var(LN) ≈ N2ω′ , ω′ > 1/3. Note that this asymptotic
regime seems not completely reached in Figure 2 which
includes estimates for N up to 104. Hence the “small N”
regime is rather extended. As is apparent in the figure,
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Fig. 2. Scaling of the variance of the LCS length. Random
String model: averages over 105 instances for 1 ≤ N ≤ 1500
and over 104 instances for 1500 ≤ 104. Bernoulli Matching
model: averages over 104 instances for 1 ≤ N ≤ 1500. Dashed
lines of slope 2/3 give the expected scaling for the Bernoulli
Matching model.

it becomes more and more extended as S increases, and
the asymptotic regime is more and more difficult to reach.
For this reason it is difficult to tell if the exponent ω′ de-
pends on S or not. It is also difficult to tell if the numerical
dependencies of Var(LBN) and Var(LN) respectively on S
remain reversed in the asymptotic regime. As is seen in
Figure 3A however, our datas for S = 2 and S = 4 are
almost indistinguishable in the range 104 ≤ N ≤ 2× 104.
We are thus tempted to conjecture that ω′ is indepen-
dent of S, and truly characterizes the universality class of
the Random String model. Assuming that the asymptotic
scaling regime is almost reached in Figure 3A leads to the
estimate ω′ = 0.418± 0.005.

The distribution of LN is also of interest. We
found that the random variable XN = (LN −
E(LN ))/

√
Var(LN ) is very nearly normally distributed

even at rather small values of N . These findings indi-
cate that a central limit theorem should apply to the LCS
length of two random strings, despite the nonlinear growth
of Var(LN). Figure 3 shows the results of a computation
in the case of binary strings.
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Fig. 3. (A) Scaling of of Var(LN ) for 104 ≤ N ≤ 2 × 104 in
cases S = 2 and S = 4 (averages over 5000 random strings).
The solid lines are best linear fits (slope 0.830 for S = 2 and
0.844 for S = 4). The dashed line has reference slope 2/3. (B)
Histogram of the values of XN for S = 2 and N = 500 (aver-
ages over 104 random strings). The solid curve corresponds to
the normal distribution with mean 0 and unit variance.

2.3 Computations for the Bernoulli matching model

We have performed similar Monte-Carlo simulations for
the Bernoulli Matching model. For computational reasons
(generating two pseudo-random strings of size N is faster
than a whole N×N matrix), we restricted extensive com-
putations to sizes N ≤ 1500. We nevertheless performed
a limited set of computations at sizes up to N = 105, in
order to check the validity of (4) in that case. We found
that this finite size scaling law applies to the mean value
E(LBN)/N as well. Using the same method as above we
obtained the estimates of γBS which are quoted in Table
2 for 2 ≤ S ≤ 15. These are not as precise as the cor-
responding estimates for the Random String model, since
the extrapolation was restricted to smaller values of N .
However we estimate the precision on γBS to be better
than 0.1%. More interestingly, we found that the values of
γBS are very well-reproduced by the simple expression

γBS = 2/(1 +
√
S), (5)

a formula which had already been conjectured by Steele
[11,13]. In fact Steele made his conjecture for the original
LCS problem, at a time where precise numerical estimates
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Table 2. Estimates of γBS for 2 ≤ S ≤ 15. The extrapolation of
E(LBN )/N ,N ≤ 1500, was based on (4) with εN ∼ CS/(N lnN)
(values obtained for AS and CS are not reproduced). Precision
on γS , estimated as the range of variation of our estimates
for several choices εN ∼ KS(N lnαN)−1, is about 0.05%. The
conjectured values 2/(1 +

√
S) for γBS are also quoted.

S γBS 2/(1 +
√
S) S γBS 2/(1 +

√
S)

2 0.82860 0.828427 9 0.50047 0.5

3 0.73236 0.732051 10 0.48082 0.480506

4 0.66698 0.666667 11 0.46383 0.463325

5 0.61823 0.618034 12 0.44850 0.448018

6 0.58030 0.579796 13 0.43484 0.434259

7 0.54892 0.548584 14 0.42223 0.421793

8 0.52291 0.522408 15 0.41077 0.410426

of γS where not available, but it happens to be valid for
the Bernoulli Matching model.

A short discussion may be instructive. Let Ak be the
event that there exists a sequence of matches of length k.
Then the length of a longest sequence of matches is

L =
N∑
k=1

1Ak , (6)

where 1A is the indicator of set A in the sample space
Ω of the model (be it the random string model or the
Bernoulli Matching model). Hence the mean value E(L)
essentially depends on the behaviour of the probabilities
P (Ak): Using the martingale difference method (see e.g.
[13]), one finds that

P (|L−E(L)| ≥ k) ≤ 2e−
k2

8N (7)

hence P (Ak) ≥ 1− 2 exp(−(EL− k)2/8N) for k ≤ E(L),
and P (Ak) ≤ 2 exp(−(k −EL)2/8N) for k ≥ E(L).

The location of this transition is very difficult to com-
pute, but it is clearly related to the behaviour of the ran-
dom variable Nk(ω) defined as the number of sequences
of matches of length k for a given instance ω. Clearly

P (Ak) ≤ E(Nk) = S−k
(
N

k

)2

. (8)

Setting k = xN for 0 < x < 1 and using Stirling formula,
it is found [8] that E(Nk) has a transition from exponen-
tially growing to exponentially decreasing behaviour at a
value x = x̂S given by the solution to x(1 − x)(1−x)/x =
S−1/2. Hence x̂S is an upper bound for γS and γBS . It
is not very accurate: one has x̂2 ≈ 0.9, and as S → ∞,
x̂S ∼ e/

√
S which is not what one would expect from (5).

The reason of this failure is that Nk is not a self-averaging
quantity, so that its mean value does not reproduce well its
typical behaviour. Consider then the “entropy” ln(Nk+1).
This is a self-averaging quantity from which γc(= γS or
γBS ) can be computed as the smallest number 0 < γ < 1
such that x > γ implies

lim
N→∞

E ln(NxN + 1)

N
= 0. (9)
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Fig. 4. Scaling of the finite size corrections to linear growth
for the Bernoulli Matching model. The figure represents a plot
of lna(N) defined in the text in function of lnN (300 ≤ N ≤
1500) for different values of S. Dashed lines with slope −1
visualize the scaling expected from (4).

Clearly the function f(x) = limN→∞N−1E ln(NxN+1) is
singular at x = γc. From the results of Section 4, we even
expect f(x) to be discontinuous at x = γc. Unfortunately,
computing E ln(Nk + 1) is still a difficult problem.

Steele suggested another approach to the problem [26],
which consists of looking at the maximum of Nk(ω). The
location kmax of this maximum is a self-averaging quan-
tity which may be expected to be comparable in a simple
way with the LCS length: a plausible guess is that with
probability one, kmax/L→ 1/2 as N →∞. Assuming this
we must maximize f(x) defined above, and the situation
is not much better than before. But now the approxima-
tion of replacing Nk by its mean value does work much
better: E(Nk) has a sharp maximum at k ∼ xSN , where

xs = 1/(1 +
√
S). Hence quite surprisingly, 2xS is a really

good estimate for γS , and it happens to give the correct
value of γBS . We have no explanation for this observation,
but we remark that a similar computation can be done for
the related Longest Increasing Subsequence (LIS) Prob-
lem. Given a sequence of distinct numbers x1, ..., xN this
problem asks for a sequence 1 ≤ i1 < ... < ik ≤ N such
that xi1 < ... < xik and k is maximal. When the xi’s are
i.i.d. random variables uniformly distributed in [0, 1], it is
known that the expected length of a LIS is asymptotic to

γIS
√
N where γIS = 2 [27]. Now let N (IS)

k be the num-
ber of increasing subsequences of length k of x1, ..., xN , so
that

E(N (IS)
k ) =

(
N

k

)
1

k!
· (10)

Using Stirling formula, one finds that E(N (IS)
k ) has a tran-

sition from a rapidly growing to a rapidly decreasing be-
haviour at k ∼ e

√
N , and presents a sharp maximum at

k ∼ xIS
√
N where xIS = 1. Hence γIS = 2xIS and the

above approximation is actually exact in this case.

As a byproduct, expression (5) provides a consistent
mean to check the validity of the finite size scaling (4)
for the Bernoulli Matching model. Indeed we can measure
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directly the scaling in N of the quantity

aS(N) =
√
N(γBS N −E(LBN )). (11)

As is shown in Figure 4, ln aS(N) has a near linear depen-
dence on ln(lnN) with a slope consistent with −1, as is
expected by assuming the validity of (4).

3 The case N 6= M and a cavity solution

There is still another way to study the asymptotic be-
haviour of E(LN ), which consists of working directly with
the recurrence relation (1). This point of view has the ad-
vantage that it enables one to study the case M 6= N in a
natural way, leading to a generalization of (5) to the case
where N,M →∞, the ratio r = M/N being fixed.

In order to find the asymptotics of (1) it is convenient
not to work with Lij directly, but rather (as in [23]) with
the differences νij and µij defined by

νij = Lij − Li−1,j , µij = Lij − Li,j−1, 1 ≤ i, j ≤ N.
(12)

The recurrence relations for νij and µij are readily seen
to be

νij = max
(
0, εij − µi−1,j , νi,j−1 − µi−1,j

)
µij = max

(
0, εij − νi,j−1, µi,j−1 − νi,j−1

)
(13)

with boundary conditions νi,0 = ν0,i = µi,0 = µ0,i = 0. In
the Random String model we have εij = δXi,Yj , whereas in
the Bernoulli Matching model the εij ’s are i.i.d. Bernoulli
variables with P (εij = 1) = 1 − P (εij = 0) = 1/S. We
consider relations (13) as a kind of exact cavity equations
[28] for the LCS problem. The LCS length LN can be
retrieved by summing the νij ’s and µij ’s along the first
bisector. To be precise

LN =
N∑
i=1

(
νii + µi−1,i

)
=

N∑
i=1

(
µii + νi,i−1

)
.

(14)

When N 6= M , M/N = r, we view LNM as a sum along
a path “as straight as possible” in the direction defined
by r, e.g. a path zigzagging along the straight line joining
the points (0, 0) and (N,M) in such a way as to keep as
close as possible from this line.

A simple, but important observation is that the vari-
ables νij and µij can take only the values 0 and 1. Hence
let us introduce the probabilities

pij = P (νij = 1), p′ij = P (µij = 1). (15)

As i and j → ∞, it is natural to expect that pij and p′ij
have limits depending only on the ratio r = j/i. We denote
these limits respectively by p(r) and p′(r) (or p and p′ for
short).

For a given r > 0, LN,[rN ] is a sum of N terms νij
and rN terms µij , along a path “close” to the straight

line from (0, 0) to (N, [rN ]). Hence the limit γS(r) =
limN→∞E(LN,[rN ])/N must be given by

γS(r) = p(r) + rp′(r). (16)

Now a relation between p(r) and p′(r) can be readily ob-
tained from (13) if we assume that for large i and j, the
occupation numbers νi,j and µi,j are nearly independent
variables. It turns out that this decorrelation property
holds true in the Bernoulli Matching model. It can be jus-
tified on the basis of a transfer matrix method for this per-
colation problem which will be presented elsewhere [29].
In the limit i, j → ∞ we are thus led to the following
self-consistent equations:

pij = 1− p′i−1,j − (1− 1/S)(1− pi,j−1)(1− p′i−1,j),

p′ij = 1− pi,j−1 − (1− 1/S)(1− pi,j−1)(1− p′i−1,j).
(17)

If we now let p(r) = limi→∞ pi,[ri] and p′(r) =
limi→∞ p′i,[ri] and note that pi,[ri]−1 = pi,[ri] −

1/i(d/dr)p(r) and p′i−1,[ri] = p′i,[ri] + r/i(d/dr)p′(r) up to

negligible terms in the limit i→∞, then taking the sum
and the difference in (17) leads to

1 = p+ p′ + (S − 1)pp′ (18)

and

d

dr
p(r) + r

d

dr
p′(r) = 0. (19)

These last two equations determine the functions p(r) and
p′(r) completely. A simple computation gives now

p(r) =

√
rS − 1

S − 1
, p′(r) =

√
S/r − 1

S − 1
· (20)

Note that the relation p′(r) = p(1/r) is obvious from
symmetry considerations. It must be also remarked that
(20) is only satisfied for 1/S ≤ r ≤ S (although (18,
19) are valid for all r except r = S and r = 1/S): the
LCS problem has a percolation transition when one of
the two strings is S times larger than the other. Suppose
for instance r = M/N = S. Consider the sequence of
matches (1, j1), (2, j2), ..., where j1 is the smallest integer
j ≥ 1 such that (1, j) is a match, j2 is the smallest in-
teger j > j1 such that (2, j) is a match, and so on. The
differences jk+1 − jk are independent random variables
with mean value S. By the law of large numbers, jk is
asymptotic to kS as k →∞. It follows that the length of
this sequence of matches, restricted to the integer points
(ij) such that j ≤ M , is asymptotic to M/S = N as
N → ∞. Hence for r ≥ S we have γS(r) = γBS (r) = 1
(and also γS(1/r) = γBS (1/r) = 1/r by symmetry). This
means that when i is large and j ≥ Si, Lij is nearly equal
to i, hence for each i′ ≤ i and j′ ≥ j we have νi′j′ = 1 and
µi′j′ = 0 with high probability. In other words, r ≥ S im-
plies p(r) = 1 and p′(r) = 0, and by symmetry, p(1/r) = 0
and p′(1/r) = 1. From (20, 16) we find the expression of
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Fig. 5. The boundary shape of the set Ct/t for the Bernoulli
Matching model for S = 2 (t = 100, 500, 1000, 2300) and S =
15 (t = 100, 300, 700). Each dotted line represents an average
over 1000 instances of size N ((N,N) Bernoulli matrices) with
N = 3000 for S = 2 and N = 2000 for S = 15. The solid curve
is the asymptotic shape predicted from (21).

the function γBS (r) of the Bernoulli Matching model for
1/S ≤ r ≤ S:

γBS (r) =
2
√
rS − r − 1

S − 1
· (21)

Note that the transition of γBS (r) at r = S and r = 1/S is
“second order”, that is dγBS /dr = p′(r) is continuous and
d2γBS /dr

2(r) is discontinuous at r = S and r = 1/S.
Figure 5 shows the confrontation of equation (21) to

a Monte-Carlo computation of the Bernoulli Matching
model for S = 2 and S = 15.
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Fig. 6. The boundary shape of the set Ct/t for the
LCS problem (Random String model) for S = 2 (t =
100, 500, 1000, 1500, 2000) and S = 15 (t = 100, 300, 500, 1100).
Each dotted line represents an average over 1000 random
strings of size N = 3000. The solid curve, plotted for com-
parison, is the asymptotic shape predicted from (21) for the
Bernoulli Matching model.

We have plotted, for several values of t, the “curves”
delimiting the set Ct/t in the two dimensional (x, y)
plane, where Ct = {(ij): 1 ≤ i, j ≤ N,Lij ≤ t}. As t→∞,
the boundary of Ct/t approaches asymptotically the curve
of parametric equation r → (1/γBS (r), r/γBS (r)). This is
the solid curve which we have plotted using (21). Figure 6
reproduces for comparison the results of analogous com-
putations made for the Random String model. Note that
as S increases, the differences between the results for the
Bernoulli Matching model and the random string model
are less and less significant, and it is reasonable to expect
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that γS(r) is asymptotic to γBS (r) as S →∞. Numerically
the convergence is rather rapid: the quantity S(γBS − γS)
shows a maximum at S ≈ 11 after which it happens to
decrease. Such a phenomenon has already been observed
and interpreted in other combinatorial optimization prob-
lems [30], and it would be of interest to have a theoretical
understanding of the large S behaviour of γBS − γS . We
leave this question open for future work.

4 Configuration space properties
of the LCS problem

In this section we study generic properties of the set of
solutions of the LCS problem, that is average properties
of the set of all LCSs of two random strings.

A most direct computational access to these proper-
ties is provided by what we shall call the LCS graph of a
given instance. Given any strings X and Y of length N ,
this graph is defined as follows. The vertices are the LCS
matches, that is the set of points (ij), 1 ≤ i, j ≤ N such
that Xi = Yj and (ij) occurs in at least a LCS of X and
Y . Two LCS matches are incident in the LCS graph if
they occur as successive matches (regardless the order) in
the same LCS.

It is a nice feature of the LCS problem that this struc-
ture may be computed in a very efficient way. To a large
part, this circumstance is due to the directed nature of
the problem, which greatly simplifies the structure of the
set of solutions.

4.1 Construction of the LCS graph

Since the construction we have used is rather simple we
shall not give a precise algorithm, but rather indicate the
main steps, together with the main observations which
enable an efficient implementation.

Given integer points (i1j1) and (i2j2) we write (i1j1) <
(i2j2) if i1 < i2 and i2 < j2. Suppose the LCS matrix of
X and Y is computed, and let L be the length of a LCS
of X and Y . Following the terminology of [31], we call an
integer point (ij) such that Xi = Yj a match of rank k if
k is the length of a LCS of X1, ...,Xi and Y1, ..., Yj . It is
then easy to construct, for each 1 ≤ k ≤ L, a list M(k)
of the matches of rank k of X and Y . It is convenient
to have the members (ij) of M(k) ordered lexicographi-
cally, in such a way that i and j vary in opposite direc-
tions, e.g. i increasing while j is decreasing. Then setting
M(k) = {(i1j1), ..., (imkjmk)}, one sees that (i1, ..., imk) is
an increasing sequence, while (j1, ..., jmk) is a decreasing
sequence. The reason for this is that given any two mem-
bers (ij) and (i′j′) of M(k) we have i < i′ ⇒ j ≥ j′, since
otherwise (ij) and (i′j′) would not be of the same rank.
This property is important for an efficient construction of
the LCS graph.

The lists M(k) are the basic data in the construction
of the LCS graph. Remark that the members of M(L) are

obviously LCS matches, hence these must be included as
vertices of the LCS graph. If P is a match of rank k < L,
then P is a LCS match if and only if there is a LCS match
Q of rank k + 1 such that P < Q. Remark also that, by
definition, a LCS match of rank k may be connected only
to LCS matches of rank k − 1 or k + 1 in the LCS graph.
If P is a LCS match of rank k > 1, and Q is a LCS match
of rank k − 1, then P and Q are connected if and only if
Q < P . We will denote by MLCS(k) the list of the LCS
matches of rank k, ordered in the way which is inherited
from the ordering of M(k).

We construct the LCS graph in L stages numbered
k = L,L−1, ..., 1. Stage L consists of inserting all matches
of rank L as vertices of the LCS graph. Once all the LCS
matches of rank > k have been inserted, stage k consists of
selecting the members of M(k) which belong to MLCS(k),
and then to insert the required edges connecting MLCS(k)
to MLCS(k + 1).

Using remarks made previously and exploiting the way
M(k) and MLCS(k + 1) have been ordered, it is easy to
see that the selection of the members of MLCS(k) from
those of M(k) at stage k may be performed in O(mk +
lk+1) steps, mk and lk+1 being the cardinality of M(k)
and MLCS(k+ 1) respectively. Hence the detection of the
whole set of LCS matches takes at most O(m) steps in
this construction, m =

∑
kmk being the total number of

matches of X and Y . The main part of the computation
is devoted to the insertion of the edges in the LCS graph.
The number of operations (comparisons and insertions)
needed to determine the edges connecting MLCS(k) and
MLCS(k+1), once these lists are known, is of order O(l2k).
Since there is no obvious bound for lk better than mk,
and no obvious bound for mk better than 2N , we obtain
a bound for the time required to compute the LCS graph
which is O(LN2).

However when X and Y are random strings from a
finite alphabet, the typical values of lk happen to be much
smaller than mk, and the typical time required by the
above construction is in fact much smaller than O(LN2).

4.2 Computations of the LCS graph

We performed a series of Monte-Carlo computations in
order to study some of the basic properties of the set of
LCSs of two random strings. We concentrated our study
on different quantities which can be easily computed once
the LCS graph is constructed.

Probably the most basic quantity which characterizes
the set of LCSs is its cardinality NLCS . Figure 7 repro-
duces the estimated average and variance of the ground
state entropy SN = lnNLCS in case S = 2, computed
over 104 random instances and for values of N ranging
from 100 to 1000. It is rather striking on this figure that
E(SN ) grows linearly with N . We expect the random vari-
able lnNLCS to be self-averaging, and this is confirmed by
the measured behaviour of its variance, whose growth is
also nearly linear. We observed this behaviour for all the
values of S we considered.
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Fig. 7. Mean value (A) and variance (B) of the ground state
entropy SN = lnNLCS as a function of N , for S = 2 (Random
String model, averages over 104 instances).

Hence we found that the number of LCSs of two typical
random strings is very large. NLCS typically grows expo-
nentially with N , with a well-defined exponential factor
αS , which we define, assuming the limit indeed exists, as

αS = lim
N→∞

E(SN )

N
· (22)

Also we define (provided the limit exists)

βS = lim
N→∞

Var(SN )

N
· (23)

Using best linear fits we obtained rather precise estimates
of αS and βS , which are quoted in Table 3 for several
values of S.

Another quantity reflecting the “size” of the set of
LCSs of two random strings is the typical overlap of two
LCSs. Viewing a LCS of X and Y as a sequence of integer
points we define the overlap of two LCSs σ1 = (Q1, ..., QL)
and σ2 = (P1, ..., PL) as the quantity

q = q(σ1, σ2) =
1

L

L∑
k=1

δ(Qk, Pk) (24)

where δ(Qk, Pk) = 1 if Qk = Pk and 0 otherwise. q(σ1, σ2)
is analogous to the order parameter used in the theory

Table 3. The exponential growth factor of the number of LCSs
of two random strings and the average overlap between two
LCSs.

S αS βS qS

2 0.2458(8) 0.232(2) 0.6753(8)

3 0.2302(4) 0.171(1) 0.6782(8)

4 0.2086(3) 0.145(2) 0.6851(7)

5 0.1903(2) 0.125(2) 0.6921(7)

10 0.1365(2) 0.0885(1) 0.7138(10)

15 0.1100(1) 0.0711(1) 0.7264(8)

of spin glasses [28]. The quantity L(1 − q(σ1, σ2)) should
be regarded as a kind of Hamming distance in the space
of LCSs of X and Y . The object of interest here is the
empirical distribution of q(σ1, σ2) for σ1 and σ2 ranging
over the set of LCSs of X and Y . We denote by 〈q〉 and
〈q2〉 the first and second moment of the overlap under this
distribution. It is not difficult to see that

〈q〉 =
1

L

L∑
k=1

∑
Q∈MLCS(k)

P1(Q)2 (25)

where

P1(Q) =
NLCS(Q)

NLCS
, (26)

and NLCS(Q) is the number of LCSs of X and Y of which
the integer pointQ is a member. Hence the average overlap
〈q〉 can be easily computed for any given instance of X,Y
once the LCS graph is constructed. Also we have

〈q2〉 =
1

L2

L∑
k=1

L∑
l=1

∑
Q∈MLCS(k)

∑
Q′∈MLCS(l)

P2(Q,Q′)2

(27)

where

P2(Q,Q′) =
NLCS(Q,Q′)

NLCS
(28)

and NLCS(Q,Q′) is the number of LCSs of X and Y of
which points Q and Q′ are members. It is still elementary
to compute 〈q2〉, but more computationally lengthy due
to the above double summation.

We denote the averages of 〈q〉 and 〈q2〉 over the ran-
dom strings X and Y simply by E(q) and E(q2). Figure 8
presents the results of a Monte-Carlo computation of E(q)
and Var(q) = E(q2) − (Eq)2 in the case S = 2. This fig-

ure shows that E(q) has a nearly 1/
√
N convergence to a

limit value qS as N →∞. Not surprisingly in view of the
fact that NLCS grows exponentially with N , we find that
qS < 1. Estimates of qS based on a 1/

√
N extrapolation

of our finite size results are given in Table 3.
It is also seen in Figure 8 that the variance of the over-

lap decreases with N roughly as 1/N . Hence we conclude
that the overlap q(σ1, σ2) of two randomly chosen LCSs
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Fig. 8. (A) The average overlap E(q) of two random LCSs
as a function of 1/

√
N (100 ≤ N ≤ 1000, averages over 104

random strings). (B) The variance Var(q) = E(q2) − (Eq)2 of
q as a function of 1/N (10 ≤ N ≤ 100). Statistical error bars
in (A) were obtained from estimates of the standard deviation
of 〈q〉, not to be confused with the overall standard deviation√

Varq which is larger and is much more lengthy to compute.

happens to be self-averaging, i.e. q(σ1, σ2) becomes non
random (and equal to qS) in the limit N → ∞. This is
in fact not surprising: the space of LCSs of two random
strings is not very far from having a product structure and
the quantity (1−q(σ1, σ2)) is a kind of (normalized) Ham-
ming distance on this space. In the conventional wisdom
of statistical mechanics, we would say that, although there
is some pathology in this system from a physical point of
view (it does not satisfy “Nernst’s principle”), it presents
no replica symmetry breaking.

We also considered quantities which are of interest to
describe the “shape” of the LCS graph. Two such quanti-
ties are the distribution of the distance between two suc-
cessive matches of a LCS, and the distribution of the num-
ber of LCS matches of a given rank. More precisely, we let
P(d,X, Y ) be the empirical distribution, over the set of
LCSs of X and Y , of the distance between two successive
LCS matches:

P(d,X, Y ) =
1

L− 1

L−1∑
k=1

∑
Q∈MLCS(k)

NLCS(Q, d)

NLCS
·

(29)

Here NLCS(Q, d) is the number of LCS σ = (Q1, ..., QL)
of X and Y such that Qk = Q for some k < L, and

|Qk+1−Qk| = d (the distance between two points is taken
to be Manhattan distance |(i1j1)−(i2j2)| = |i1−i2|+|j1−
j2|). We define PS(d,N) as the average of P(d,X, Y ) over
random S-ray strings of size N . Also we let Π(m,X, Y ) be
the empirical distribution of the cardinality of MLCS(k)
over 1 ≤ k ≤ L, i.e.

Π(m,X, Y ) =
1

L

L∑
k=1

δ(lk,m), (30)

lk being the number of LCS matches of rank k, and we
let ΠS(m,N) be the average of Π(m,X, Y ) over X and
Y . It is natural to expect that PS(d,N) has a limit PS(d)
as N → ∞. It is not so obvious that the same holds for
ΠS(m,N). We found numerically that both PS(d,N) and
ΠS(l, N) approach well-defined distributions as N grows.
Figure 9 reproduces graphically PS(d) for S = 2, 4, 10 and
15. As S increases the maximum of PS(d) becomes more
and more pronounced and is displaced to the right, as
is expected from the relation

∑
d≥0 dPS(d) = 2/γS. The

asymptotic shape of ΠS(m) appears to depend much less
drastically on S so we give only the results obtained for
S = 2 and S = 4 (Fig. 10). Numerically it is found that the
typical number of LCS matches of a given rank remains
bounded as N grows.

This contrasts with the behaviour of the diameter of
the sets MLCS(k) (in the Manhattan distance). This be-
haviour is shown in Figure 11, where are plotted the quan-
tities DS(N) and VS(N), defined to be respectively the
mean and variance over random S-ray strings of size N of

DS(X,Y ) =
1

L

L∑
k=1

diam(MLCS(k)). (31)

Clearly DS(N) appears to grow with N . In fact from
heuristic scaling arguments, we expectDS(N) to be of the
same order as the finite size corrections to the linear scal-
ing of E(LN ). If we are confident in (4), this means that

DS(N) should grow asymptotically as
√
N/ lnN . Fortu-

nately this is what we find from a χ2 analysis: the solid
curve in Figure 11A is a best fit of our estimates to a func-
tion of the form C1 +C2

√
N/ lnN . The corresponding χ2

value is 12, 74 for a number of degrees of freedom of 13.
For comparison, the χ2 value achieved from a best fit to
C1 + C2

√
N is of 37.7, which is much too large. This nu-

merical test provides another support to the reliability of
(4). Note however that the fluctuations of DS(X,Y ) are
far from negligible, as the variance of DS(X,Y ) shows a
near linear growth.

The asymptotic distributions PS(d) and ΠS(m) pro-
vide useful informations on the local properties of the LCS
graph, but they tell nothing about the universality class
of the LCS problem. Results for the mean square “dis-
placement” i − j along the LCS graph are presented in
Figure 12. One way to measure this quantity would be to
generate a given LCS in a sequential way and to perform
averages along this LCS [22]. Since we are able to perform
exact averages over the set of LCSs, we use here a more
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Fig. 9. The distribution PS(d) of the distance between two
successive LCS matches, for S = 2, 4, 10, 15 (averages over 104

random strings in each case). Each figure show results for differ-
ent values of 100 ≤ N ≤ 1500 superposed in order to visualize
the collapse toward a limit value.
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Fig. 10. The distribution ΠS(m) of the number of LCS
matches of a given rank for S = 2 and S = 15 (averages over
104 random strings in each cases).

“static” definition: for a given instance, the mean square
displacement along a LCS chosen at random is given by

〈(i− j)2〉 =
1

L

L∑
k=1

∑
Q∈MLCS(k)

P1(Q)(i− j)2 (32)

where P1(Q) is defined as before and we have set Q = (ij).
We then estimate E((i − j)2) as an average over a large
number of random strings of 〈(i − j)2〉 computed for
each instance. The price to pay for exact computations
is mainly a limitation on the size N of our instances. It
is seen in Figure 12 however that the scaling behaviour
E((i − j)2) ≈ N4/3 is reached rather fast, both for the
Bernoulli matching model and for the Random String
model. We cannot exclude the possibility of a crossover
at N � 1500 for the Random String model. But then the
asymptotic scaling regime of E((i−j))2 would be attained
at much larger values of N than for Var(LN), which seems
unlikely.

5 Concluding remarks

This article has been devoted to the presentation of a thor-
ough investigation of the LCS Problem by means of nu-
merical simulations. One of our main findings is that the
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Fig. 11. Behaviour of (A) the mean DS(N) and (B) the vari-
ance VS(N) of the width of the LCS graph (averages over 104

random 15-ray strings).
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Fig. 12. Scaling of the average “displacement” E((i − j)2)
along the LCS graph, for the Random String model (RS)
(100 ≤ N ≤ 1500) and for the Bernoulli Matching model (B)
(100 ≤ N ≤ 1000). Averages are over 104 instances in each
case, with S = 2. The N4/3 scaling is visualized by the dashed
line of slope 4/3.

finite size behaviour of the average LCS length E(LN ) is
very well-reproduced by (4). This form provides a numeri-
cally trustworthy method of extrapolation, from which we
have improved significantly the precision on previous esti-
mates of the limit ratio γS . It is very difficult at present to
find any theoretical insight which could justify (4). Even
improving on Alexander’s rate result seems very difficult.
It could be useful in this respect to have a better under-
standing on the effects of boundary conditions in these
kind of problems.

We also studied a related model where the two strings
are replaced by a matrix of i.i.d. Bernoulli variables in-
dicating the locations of the matches. We obtained a
simple analytic expression (21) for the “passage time”
function γBS (r) of this Bernoulli Matching model. This ex-
pression compares very well with our numerical results,
and it provides also an excellent approximation for the
Random String model. As this approximation becomes
more and more accurate as S becomes large, a natural
question is then whether one could evaluate some correc-
tions induced by the correlations among matched points
in the Random String model.

A further interesting question concerns the applica-
bility of the cavity-like method used to derive (21). What
makes this method work for the Bernoulli Matching model
is that a remarquable decorrelation property holds in this
percolation problem [29]. It would be interesting to find
other percolation problems where such a decorrelation
property occurs. This would provide simple means to ob-
tain analytical information on the passage time constants
of such models.

We finally investigated average properties of the set of
solutions, and the “universality class” of the LCS problem.
We were rather surprised to find that the number of com-
mon subsequences of maximal size of two typical random
strings grows exponentially with the size of the strings.
It follows that two (randomly) given LCSs are to a large
extent distinct, as confirmed by the study of their typical
overlap. We also found that the long ranged correlations
in the Random String model appear to be relevant to the
universality class of the model, as is seen from the large
N behaviour of Var(LN). One may wonder why this has
not been observed in Needleman-Wunsch sequence align-
ment [15]. A plausible reason (pointed out in [15]) is that
introducing a gap penalty in the model results in bind-
ing more tightly the optimal paths to the first bisector.
This should reduce the effect of correlations and extend
the “small N” scaling regime to larger values of N . In
particular for biological purposes only the small N regime
is likely to be relevant. An exciting issue is the possible
occurrence of a phase transition in the gap parameter of
Needleman-Wunsch alignment.

Another interesting question is whether a proliferation
of solutions is specific to random sequences and subse-
quences, or if such phenomenon is of relevance to other
percolation situations. As already said, the smallness of
the variance of LN is probably related to the large num-
ber of LCSs of two random sequences. Smallness of the
variance of the passage time from (0, 0) to (0, N) is also
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observed in usual first passage percolation on Z2. In fact
these models (a famous example of which is the Eden
model) are known to fall into the universality class of di-
rected polymers in random media. One may expect to find
in these models a large number of quasi optimal paths with
typical overlaps smaller than one.

J. BdM. wish to thank professor P. Blanchard for his kindness
and hospitality at the BiBoS center of Bielefeld, and for sev-
eral stimulating discussions. He is very grateful to D. Gandolfo
who suggested the use of a parallel machine and initiated him
to parallel computing, and to O.C. Martin for his useful com-
ments on the paper. It is a pleasure to thank M. Steele for
useful communications. Thanks go also to one of the referees
for pointing to the author reference [15]. This work has been
supported by the EU-TMR project “Stochastic Analysis and
its Applications”.

References

1. S. Needleman, C. Wunsch, J. Mol. Biol. 48, 443 (1970).
2. D. Sankoff, R. Cedergren, G. Lapalme, J. Mol. Evol. 7, 133

(1976).
3. M. Waterman, Philos. Trans. Roy. Soc. Lond. B 344, 383

(1994).
4. R. Wagner, M. Fisher, J. Assoc. Comput. Mach. 21, 168

(1974).
5. D. Sankoff, J. Kruskal, Time Warps, String Edits, and

Macromolecules: The theory and practice of sequence com-
parison (Addison Wesley, Reading, Mass, 1983).

6. E. Ukkonen, Inform. Control 64, 100 (1985).

7. K. Alexander, Ann. Appl. Prob. 4, 1074 (1994).
8. V. Chvatal, D. Sankoff, J. Appl. Prob. 12, 306 (1975).
9. J. Deken, Discr. Math. 26, 17 (1979).

10. V. Dancik, Ph.D. thesis, University of Warwick (1994).
11. M. Steele, SIAM J. Appl. Math. 42, 731 (1982).
12. V. Dancik, M. Paterson, Science 775, 306 (1994).
13. M. Steele, Probability Theory and Combinatorial Optimi-

sation (SIAM Philadelphia, ISBN 0-89871-380-3, 1997).
14. W.T. Rhee, Ann. Appl. Prob. 5, 44 (1995).
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